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Abstract 

We propose a novel wearable system that enables 

users to create their own object recognition system 

with minimal effort and utilize it to augment their 

memory. A client running on Google Glass collects 

images of objects a user is interested in, and sends 

them to the server with a request for a machine 

learning task: training or classification. The server 

processes the request and returns the result to Google 

Glass. During training, the server not only aims to build 

machine learning models with user generated image 

data, but also to update the models whenever new data 

is added by the user. Preliminary experimental results 

show that our system DeepEye is able to train the 

custom machine learning models in an efficient manner 

and to classify an image into one of 10 different user-

defined categories with 97% accuracy. We also 

describe challenges and opportunities for the proposed 

system as an external memory extension aid for end 

users. 
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Introduction 

With recent technological advances in wearable 

computing, users can more easily collect information 

about their surroundings. For instance, users can 

directly capture images of objects through a smart 

glass rather than a smartphone. Google Glass is a 

representative wearable that can translate this scenario 

into reality. Since the camera functionality of Google 

Glass is always ready to be activated instantaneously 

by the user’s command, it is reasonable to assume that 

more image data representing users’ personal interests 

could be collected. Consequently, there are more 

chances to build a user-tailored object recognition 

system by utilizing those collected images as training 

data. 

Recently, deep learning has been making a 

breakthrough in diverse computer vision and pattern 

recognition problems [6, 10]. Deep learning is a 

machine learning technique that attempts to extract 

high-level concepts from data via a complex model 

composed of hierarchical processing units. The trained 

deep learning model then utilizes the extracted 

concepts in making predictions on new data. Deep 

convolutional neural networks (CNNs), a commonly 

used type of network, have been widely used in the 

computer vision community [14]. CNNs are biologically-

inspired variants of artificial neural networks, which 

mimic how the human brain perceives and processes 

images. These networks are comprised of multiple 

layers of filters which hierarchically process segments 

of the input image. Pooling layers are often added to 

reduce dimensionality and add translational invariance. 

Finally, multiple fully connected layers may be used to 

combine the spatial features and produce a final 

classification. Specifically, outputs of convolutions in 

the lower layers are used to represent the primitive 

element that forms the image (e.g., edge). Then, these 

representations are integrated in the higher layers to 

express more abstract concepts (e.g., shape) of the 

image. With this architecture, we can train the whole 

network through the standard backpropagation 

algorithm by using the labeled images as training data. 

Recent studies proved that CNN-based image classifiers 

have reached near-human accuracy levels on diverse 

visual recognition tasks [1, 5, 11, 12]. 

However, most deep learning applications thus far have 

been developed for the general population, and not for 

the personal needs of individuals. Imagine a professor 

who gives a lecture to 300 students. This professor 

may want to wear Google Glass displaying the students’ 

names during the lecture because it is difficult to 

memorize them all. Those with mild cognitive impair-

ments could use a Google Glass system capable of 

recognizing their personal objects. This would help 

when they have memory problems. To realize all of 

these scenarios, each individual user needs to have a 

custom machine learning model trained on her/his own 

image data, and utilize the model for recognizing an 

input image. 

In this paper, we propose a novel wearable system 

called DeepEye that enables users to create their own 

CNNs without any difficulties. To begin with, DeepEye 

employs Google Glass for collecting image data 

representing users’ personal interests. A user can take 



 

images of an object of interest and apply whatever 

label they want. DeepEye then transmits these labeled 

images to the GPU1-equipped server to train the CNN. 

In general, training deep learning models like a CNN 

from scratch uses a considerable amount of time on 

modern GPUs and requires very large volumes of 

training data. To make the training process more 

practical, we utilized a well-known neural network 

training approach named finetuning. Finetuning was 

designed to quickly train a new CNN with a relatively 

small amount of training data by utilizing the previously 

trained CNN as a starting point. DeepEye can also run 

as an image classifier to help users recall what they are 

looking at through Google Glass. If the user asks 

DeepEye to recognize an object from an image, 

DeepEye shows the classification result produced by the 

server. The server thereby utilizes the CNN trained 

specifically for the user. The proposed system showed 

about 97% accuracy in classifying an image taken by 

Google Glass into one of 10 user-defined categories. 

We discuss the potentials and the limitations of the 

proposed system in helping users with memory 

problems. 

Related Work 

There were several attempts to build object recognition 

systems on wearable computers to reinforce users’ 

recollection powers. Steve Mann designed and prototyped 

a wearable personal imaging device that could recognize 

human faces in an image [8]. This wearable device was 

also equipped with a small head-mounted display to give 

textual information to users. The author stated that the 

system could act as a visual perception enhancer because 

it could provide users with real-time feedback on the 
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image they were seeing. Even though it is considered as a 

pioneering work of a wearable object recognition system, 

the prototype was cumbersome to wear (e.g., a set of 

communication units were attached to the user’s body). 

This topic has not been actively studied after the early 

2000s. This is probably because there were no commercial 

camera-equipped wearables available, leading to less 

opportunities for research in both academia and industry. 

However, the situation may change with the advent of 

Google Glass. For instance, Way et al designed a Google 

Glass application named ELEPHANT for retrieving meta 

information about the situation (e.g., location, time, date, 

etc) from an image [13]. They anticipated that ELEPHANT 

could help people with memory impairment because it can 

provide contextual information when they have difficulty 

remembering a specific object. This work is very relevant 

with ours, however, the authors has not yet prototyped its 

machine learning functionalities for retrieving information 

from images taken by Google Glass. 

Personalized Object Recognition System 

In this section, we discuss the design and implementa-

tion of our system in detail. First, we describe an over-

all system architecture including software/hardware 

specifications. Next, the functional details of the system 

are explained. 

System Architecture  

Our system is designed as a client-server model (Figure 

1). As a client, Google Glass collects images when 

instructed by the user, and sends them to the server 

with a specific task type (training or classification). The 

server then carries out the requested task and returns 

the results to Google Glass. The server was designed to 

continuously train (or update) the CNN using finetuning 



 

whenever new image data is collected by Google Glass. 

When the server completes the training task, it 

replaces the preexisting CNN with the newly trained 

one that considers the most recent images. In 

summary, Google Glass acts as an image collector and 

interface which is visible to the end user. The server 

performs machine learning computations in the 

background, classifying images when needed and 

training new models when an object is added. We 

chose this architecture because Google Glass has 

limited computing power for training CNNs. 

 

Figure 1: System architecture 

CLIENT 

We developed a Google Glass application named 

DeepEye. We wrote a function for DeepEye that takes a 

photo periodically upon the user’s command. DeepEye 

sends these image data and messages to the server 

through Java socket communication over the Wi-Fi 

network. We used official Google libraries such as the 

Android 4.4.2 (API 19) SDK and the Glass Development 

Kit Preview in developing DeepEye. 

SERVER 

The main purpose of the server is to quickly train deep 

learning models with reasonable prediction accuracy. In 

order to achieve this, we built a Java server on a Linux 

workstation equipped with a modern GPU (NVIDIA 

GeForce GTX 970). We then deployed the state-of-the-

art open source deep learning framework named Caffe 

[3] on the server. If the server receives a request for 

the specific task from DeepEye, it then executes a 

corresponding Caffe command (e.g., train a CNN or 

classify an image with a CNN) through its python 

interface, and returns the result. 

Workflow 

As discussed earlier, DeepEye has two main tasks: 

training and classification. Here, we describe each task 

step by step. When DeepEye is started, a user is asked 

to choose between two tasks via the Google Glass 

touch pad (Figure 2). 

TRAINING 

For the training task, the user enters the name of the 

target object (i.e., its label) through Google Voice Input 

(Figure 3). The user can try again if the result of the 

speech recognition was incorrect. When the user 

confirms the label, DeepEye begins to take a photo of 

the object every five seconds, and transmits it with a 

message representing the current task (_train) to the 

server. This process is repeated as long as DeepEye 

receives an ACK message from the server and the user 

has not explicitly terminated the training task (Figure 

4). The server will use the transferred image data for 

training a deep learning model via finetuning. 

As discussed, training deep learning models from 

scratch is very expensive and time-consuming. For 

example, training a CNN on the ImageNet dataset 

which contains 1.2 million images with 1,000 categories 

can take several weeks on a single GPU or hours/days 

in a distributed setting [5]. For these reasons, it is 

more common to train a new model by recycling the 

fully trained model on a larger dataset if we need to 

Google Glass

ML model

Server

Classification request

Classification result

What is this?

This is “Jessica”
Training request (w/ new data)

Update ML model
(w/ new data)

Training
Classification

 

Figure 2: DeepEye initial screen 

 

Figure 3: DeepEye training – 

labelling 

 

Figure 4: DeepEye training – 

data collecting 



 

repurpose an existing model for different tasks [4]. For 

instance, we can exploit the pre-trained CNN’s well-

learned parameters representing generic visual features 

like edges at the beginning of the training. Then, we 

can focus on updating parameters which were designed 

to extract more object-specific (high-level) features 

from our image data. This approach is known as 

finetuning, one kind of transfer learning algorithm. 

Finetuning is widely used to avoid expensive training 

efforts in diverse machine learning tasks [9]. 

By using finetuning as a main building block, our server 

program works as follows. To train a new CNN model 

for a new task, it iteratively retrains the pre-trained 

CNN on a newly created dataset. Let’s assume there 

exists a CNN trained to classify an image into three 

user-defined categories A, B, and C (CNN_ABC). If a 

user adds a new category D with the corresponding 

image data, the server constructs a new model 

(CNN_ABCD) on new training data while using the old 

model (CNN_ABC) as a starting point. More specifically, 

the server defines a new CNN by adopting an under-

lying network architecture of the pre-trained CNN, but 

changes its classification layer to have a correct 

number of outputs based on the given task (e.g., 4 

output nodes for CNN_ABCD). Next, the server 

initializes parameters (weights) of the new CNN with 

that of the pre-trained CNN, then progressively updates 

the weights of the new CNN through the back-

propagation algorithm, on a new dataset. This process 

can be continued whenever new types of training data 

became available. 

The training process begins if there are at least two 

user-defined categories with a sufficient amount of 

training data. Through repeated experiments, we 

determined that 100 images per class represent a 

sufficient threshold for the training data. The process 

also checks whether there are any ongoing CNN 

training processes on the system. If training is already 

in progress, it will not try to train a new model until the 

ongoing process has ended. Next, if this is the first 

finetuning attempt, it trains a new model by using the 

pre-trained CNN named CaffeNet. We utilized CaffeNet 

as a base model because it is a publicly available pre-

trained CNN that has a reasonable performance on 

1,000 class object recognition task (ImageNet 

challenge [5]). Otherwise, it trains a new model by 

finetuning the pre-trained CNN on the previous 

finetuning stage. When a single finetuning process has 

finished, the previously trained CNN is replaced with 

the newly trained CNN. 

CLASSIFICATION 

Classification is relatively simple. When a user chooses 

the classification task, they take a picture of the object 

by clicking the Google Glass touch pad. Similar to the 

training task, DeepEye sends the image to the server, 

but with a different message (_classify). Next, the 

server uses the latest trained CNN to execute the Caffe 

classification command on the image. If no error occurs, 

the server sends the classification result (with 

probability) back to DeepEye. If DeepEye receives the 

result from the server, it displays them to the user 

through Google Glass’s heads-up display (Figure 5). 

Experiment: 10 Class Object Recognition 

Overview 

In this preliminary experiment, we aimed to evaluate 

the prediction power of finetuned CNNs in a real world 

scenario. To this end, we trained a CNN so that it can 

recognize 10 different types of objects from images 

 

Figure 5: DeepEye classification 



 

taken by Google Glass. The ultimate aim of such a 

system would be to help people with memory problems 

to recognize their personal belongings. 

Training and Validation Data 

To begin with, we chose 10 personal objects (small toy, 

badge, baseball cap, key, glass, pouch, food container, 

lotion, watch, wallet) of a member of our research team, 

and collected images using the proposed system 

consisting of DeepEye and the server. We collected the 

exact same amount of training data for each class, 

namely 100 images. We also augmented training data 

by creating additional image transformations using 

ImageMagick’s convert tool. Specifically, we created 

four variations of each original image that were rotated 

by 90, 180, and 270 degrees, and were mirrored. We 

included this step to alleviate potential overfitting 

problems as much as possible by providing more 

training data without extra labelling cost (data 

augmentation [2, 5]). 

We also collected 30 additional images for each class as 

validation data. To differentiate these from original 

training data, we deliberately changed the 

photographing conditions such as lighting, angle and 

background (see Figure 6, 7). Both training and 

validation images were taken by a single participant in 

a standard office setting. Even though Google Glass is 

equipped with a 5MP camera capable of taking 2,560 by 

1,888 resolution JPG images with a file size of about 2 

megabytes, we collected reduced-size versions of the 

images (1296 by 972 pixels) to avoid any network 

delays between DeepEye and the server. 

 

Finetuned Model 
(# of classes) 

Base Model   
(# of classes) 

Accuracy 
(loss) 

CNN (3) CaffeNet (1000) 0.99 (0.0212) 

CNN (4) CNN (3) 0.99 (0.1819) 

CNN (5) CNN (4) 0.99 (0.0555) 

CNN (6) CNN (5) 0.99 (0.0462) 

CNN (7) CNN (6) 0.99 (0.0454) 

CNN (8) CNN (7) 0.96 (0.2696) 

CNN (9) CNN (8) 0.94 (0.2319) 

CNN (10) CNN (9) 0.97 (0.116) 

Table 1: 10 class object classification – validation accuracy 

Result 

Table 1 summarizes the measured prediction power of 

all finetuned CNNs on the validation data set. For up to 

7 different objects, the trained CNNs showed a near 

perfect performance in recognizing objects without any 

serious overfitting concerns. However, the validation 

accuracy was slightly diminished as the number of 

object categories increases from 8 to 9. It may be 

improved if we collect additional training images of the 

corresponding objects, and train a new CNN at the next 

finetuning stage. The final trained CNN’s validation 

accuracy was 97% with a loss of 0.116, and took 

approximately 7 minutes to train this model on our GPU 

environment. 

Discussion and Future Work 

Google Glass 

We showed the feasibility of the proposed object 

recognition system via Google Glass. Yet, it still has 

some issues that need to be overcome before practical 

use. Google Glass emits a lot of heat when it 

continuously utilizes the camera function. According to 

[7], a single camera shot heats Google Glass 28°C 

 

Figure 6: Sample training image 

 

Figure 7: Sample validation 

image 



 

above the surrounding temperature. Because Google 

Glass is in direct contact with the skin, the heated 

surface may lead to discomfort and potentially even 

health problems for users. Therefore, users may have 

trouble collecting multiple images at once via Google 

Glass. We expect Google to fix these issues in the next 

generation of Google Glass. 

Scalability and Applicability 

At this moment, there exists no large-scale image 

dataset collected from wearable computers such as 

Google Glass. Therefore, we generated the custom 

dataset using DeepEye in our experiment, and utilized 

it for testing the proposed system. However, we will 

need to evaluate it with larger image datasets. 

Specifically, it is necessary to investigate whether the 

proposed system also works well for more complex 

image classification problems (e.g., 100 class object 

recognition). Also we need to test the system on 

different types of object recognition tasks, such as face 

recognition for the abovementioned university professor, 

to show its applicability in various situations. 

All of these steps are important to verify that the 

system could support users’ daily memory-related tasks. 

Thus, we are considering distributing DeepEye to a 

group of Google Glass users, and to collect more 

diverse image data from their everyday lives. This will 

let us conduct additional experiments to gauge the 

scalability and applicability of the proposed system. 

Effectiveness  

We believe general users are unlikely to have difficulty 

using the proposed system because they are only asked 

to perform some simple operations via Google Glass 

(e.g., image labelling through Google Voice Input). 

However, we need to check the effectiveness of the 

system with target users who have special needs. More 

specifically, we need to quantitatively and qualitatively 

assess the usability of the system for people with 

memory disorders (e.g., mild cognitive impairment), 

possibly including their caregivers. Their feedback may 

allow us to improve our user interface. More 

importantly, a longitudinal study needs to be conducted 

to verify whether the proposed system can improve 

their memory and cognitive abilities. To that end, we 

might need to collaborate with medical professionals. 

Conclusion 

In this paper, we proposed and prototyped a novel 

wearable system DeepEye that is aimed at augmenting 

human memory. To that end, the system builds 

personalized deep learning models for recognizing 

objects of interest to a user. To the best of our 

knowledge, this is the first attempt to train machine 

(deep) learning models for personalized object 

recognition, via camera-equipped wearable computers 

like Google Glass. The proposed system works as a 

client-server model: the Google Glass client collects 

images from a user’s everyday life and sends them to a 

GPU-equipped Linux server. The server then trains a 

deep convolutional neural network (CNN) on the user-

specific image data. We utilized finetuning to efficiently 

update the pre-trained network on newly-added image 

data. In the custom 10 class object recognition task, 

DeepEye trained a personalized CNN within 7 minutes 

on our GPU and showed a 97% classification accuracy. 

We plan to test the system with more complex object 

recognition tasks and to verify its effectiveness in 

augmenting human memory and perception. 
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