

Personalized Object Recognition for
Augmenting Human Memory

Abstract

We propose a novel wearable system that enables

users to create their own object recognition system

with minimal effort and utilize it to augment their

memory. A client running on Google Glass collects

images of objects a user is interested in, and sends

them to the server with a request for a machine

learning task: training or classification. The server

processes the request and returns the result to Google

Glass. During training, the server not only aims to build

machine learning models with user generated image

data, but also to update the models whenever new data

is added by the user. Preliminary experimental results

show that our system DeepEye is able to train the

custom machine learning models in an efficient manner

and to classify an image into one of 10 different user-

defined categories with 97% accuracy. We also

describe challenges and opportunities for the proposed

system as an external memory extension aid for end

users.

Author Keywords

Personalization; Object Recognition; Google Glass;

Memory Enhancement; Deep Learning; Convolutional

Neural Network; Finetuning

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

Ubicomp/ISWC'16 Adjunct, September 12-16, 2016, Heidelberg,

Germany

© 2016 ACM. ISBN 978-1-4503-4462-3/16/09…$15.00

DOI: http://dx.doi.org/10.1145/2968219.2968568

Hosub Lee

University of California, Irvine

Irvine, CA, USA

hosubl@uci.edu

Cameron Upright

Samsung Research America

Mountain View, CA, USA

c.upright@samsung.com

Steven Eliuk

Samsung Research America

Mountain View, CA, USA

s.eliuk@samsung.com

Alfred Kobsa

University of California, Irvine

Irvine, CA, USA

kobsa@uci.edu

ACM Classification Keywords

H.5.1. Information interfaces and presentation (e.g.,

HCI): Multimedia Information Systems; I.5.4. Pattern

Recognition: Computer vision.

Introduction

With recent technological advances in wearable

computing, users can more easily collect information

about their surroundings. For instance, users can

directly capture images of objects through a smart

glass rather than a smartphone. Google Glass is a

representative wearable that can translate this scenario

into reality. Since the camera functionality of Google

Glass is always ready to be activated instantaneously

by the user’s command, it is reasonable to assume that

more image data representing users’ personal interests

could be collected. Consequently, there are more

chances to build a user-tailored object recognition

system by utilizing those collected images as training

data.

Recently, deep learning has been making a

breakthrough in diverse computer vision and pattern

recognition problems [6, 10]. Deep learning is a

machine learning technique that attempts to extract

high-level concepts from data via a complex model

composed of hierarchical processing units. The trained

deep learning model then utilizes the extracted

concepts in making predictions on new data. Deep

convolutional neural networks (CNNs), a commonly

used type of network, have been widely used in the

computer vision community [14]. CNNs are biologically-

inspired variants of artificial neural networks, which

mimic how the human brain perceives and processes

images. These networks are comprised of multiple

layers of filters which hierarchically process segments

of the input image. Pooling layers are often added to

reduce dimensionality and add translational invariance.

Finally, multiple fully connected layers may be used to

combine the spatial features and produce a final

classification. Specifically, outputs of convolutions in

the lower layers are used to represent the primitive

element that forms the image (e.g., edge). Then, these

representations are integrated in the higher layers to

express more abstract concepts (e.g., shape) of the

image. With this architecture, we can train the whole

network through the standard backpropagation

algorithm by using the labeled images as training data.

Recent studies proved that CNN-based image classifiers

have reached near-human accuracy levels on diverse

visual recognition tasks [1, 5, 11, 12].

However, most deep learning applications thus far have

been developed for the general population, and not for

the personal needs of individuals. Imagine a professor

who gives a lecture to 300 students. This professor

may want to wear Google Glass displaying the students’

names during the lecture because it is difficult to

memorize them all. Those with mild cognitive impair-

ments could use a Google Glass system capable of

recognizing their personal objects. This would help

when they have memory problems. To realize all of

these scenarios, each individual user needs to have a

custom machine learning model trained on her/his own

image data, and utilize the model for recognizing an

input image.

In this paper, we propose a novel wearable system

called DeepEye that enables users to create their own

CNNs without any difficulties. To begin with, DeepEye

employs Google Glass for collecting image data

representing users’ personal interests. A user can take

images of an object of interest and apply whatever

label they want. DeepEye then transmits these labeled

images to the GPU1-equipped server to train the CNN.

In general, training deep learning models like a CNN

from scratch uses a considerable amount of time on

modern GPUs and requires very large volumes of

training data. To make the training process more

practical, we utilized a well-known neural network

training approach named finetuning. Finetuning was

designed to quickly train a new CNN with a relatively

small amount of training data by utilizing the previously

trained CNN as a starting point. DeepEye can also run

as an image classifier to help users recall what they are

looking at through Google Glass. If the user asks

DeepEye to recognize an object from an image,

DeepEye shows the classification result produced by the

server. The server thereby utilizes the CNN trained

specifically for the user. The proposed system showed

about 97% accuracy in classifying an image taken by

Google Glass into one of 10 user-defined categories.

We discuss the potentials and the limitations of the

proposed system in helping users with memory

problems.

Related Work

There were several attempts to build object recognition

systems on wearable computers to reinforce users’

recollection powers. Steve Mann designed and prototyped

a wearable personal imaging device that could recognize

human faces in an image [8]. This wearable device was

also equipped with a small head-mounted display to give

textual information to users. The author stated that the

system could act as a visual perception enhancer because

it could provide users with real-time feedback on the

1 Graphics Processing Unit

image they were seeing. Even though it is considered as a

pioneering work of a wearable object recognition system,

the prototype was cumbersome to wear (e.g., a set of

communication units were attached to the user’s body).

This topic has not been actively studied after the early

2000s. This is probably because there were no commercial

camera-equipped wearables available, leading to less

opportunities for research in both academia and industry.

However, the situation may change with the advent of

Google Glass. For instance, Way et al designed a Google

Glass application named ELEPHANT for retrieving meta

information about the situation (e.g., location, time, date,

etc) from an image [13]. They anticipated that ELEPHANT

could help people with memory impairment because it can

provide contextual information when they have difficulty

remembering a specific object. This work is very relevant

with ours, however, the authors has not yet prototyped its

machine learning functionalities for retrieving information

from images taken by Google Glass.

Personalized Object Recognition System

In this section, we discuss the design and implementa-

tion of our system in detail. First, we describe an over-

all system architecture including software/hardware

specifications. Next, the functional details of the system

are explained.

System Architecture

Our system is designed as a client-server model (Figure

1). As a client, Google Glass collects images when

instructed by the user, and sends them to the server

with a specific task type (training or classification). The

server then carries out the requested task and returns

the results to Google Glass. The server was designed to

continuously train (or update) the CNN using finetuning

whenever new image data is collected by Google Glass.

When the server completes the training task, it

replaces the preexisting CNN with the newly trained

one that considers the most recent images. In

summary, Google Glass acts as an image collector and

interface which is visible to the end user. The server

performs machine learning computations in the

background, classifying images when needed and

training new models when an object is added. We

chose this architecture because Google Glass has

limited computing power for training CNNs.

Figure 1: System architecture

CLIENT

We developed a Google Glass application named

DeepEye. We wrote a function for DeepEye that takes a

photo periodically upon the user’s command. DeepEye

sends these image data and messages to the server

through Java socket communication over the Wi-Fi

network. We used official Google libraries such as the

Android 4.4.2 (API 19) SDK and the Glass Development

Kit Preview in developing DeepEye.

SERVER

The main purpose of the server is to quickly train deep

learning models with reasonable prediction accuracy. In

order to achieve this, we built a Java server on a Linux

workstation equipped with a modern GPU (NVIDIA

GeForce GTX 970). We then deployed the state-of-the-

art open source deep learning framework named Caffe

[3] on the server. If the server receives a request for

the specific task from DeepEye, it then executes a

corresponding Caffe command (e.g., train a CNN or

classify an image with a CNN) through its python

interface, and returns the result.

Workflow

As discussed earlier, DeepEye has two main tasks:

training and classification. Here, we describe each task

step by step. When DeepEye is started, a user is asked

to choose between two tasks via the Google Glass

touch pad (Figure 2).

TRAINING

For the training task, the user enters the name of the

target object (i.e., its label) through Google Voice Input

(Figure 3). The user can try again if the result of the

speech recognition was incorrect. When the user

confirms the label, DeepEye begins to take a photo of

the object every five seconds, and transmits it with a

message representing the current task (_train) to the

server. This process is repeated as long as DeepEye

receives an ACK message from the server and the user

has not explicitly terminated the training task (Figure

4). The server will use the transferred image data for

training a deep learning model via finetuning.

As discussed, training deep learning models from

scratch is very expensive and time-consuming. For

example, training a CNN on the ImageNet dataset

which contains 1.2 million images with 1,000 categories

can take several weeks on a single GPU or hours/days

in a distributed setting [5]. For these reasons, it is

more common to train a new model by recycling the

fully trained model on a larger dataset if we need to

Google Glass

ML model

Server

Classification request

Classification result

What is this?

This is “Jessica”
Training request (w/ new data)

Update ML model
(w/ new data)

Training
Classification

Figure 2: DeepEye initial screen

Figure 3: DeepEye training –

labelling

Figure 4: DeepEye training –

data collecting

repurpose an existing model for different tasks [4]. For

instance, we can exploit the pre-trained CNN’s well-

learned parameters representing generic visual features

like edges at the beginning of the training. Then, we

can focus on updating parameters which were designed

to extract more object-specific (high-level) features

from our image data. This approach is known as

finetuning, one kind of transfer learning algorithm.

Finetuning is widely used to avoid expensive training

efforts in diverse machine learning tasks [9].

By using finetuning as a main building block, our server

program works as follows. To train a new CNN model

for a new task, it iteratively retrains the pre-trained

CNN on a newly created dataset. Let’s assume there

exists a CNN trained to classify an image into three

user-defined categories A, B, and C (CNN_ABC). If a

user adds a new category D with the corresponding

image data, the server constructs a new model

(CNN_ABCD) on new training data while using the old

model (CNN_ABC) as a starting point. More specifically,

the server defines a new CNN by adopting an under-

lying network architecture of the pre-trained CNN, but

changes its classification layer to have a correct

number of outputs based on the given task (e.g., 4

output nodes for CNN_ABCD). Next, the server

initializes parameters (weights) of the new CNN with

that of the pre-trained CNN, then progressively updates

the weights of the new CNN through the back-

propagation algorithm, on a new dataset. This process

can be continued whenever new types of training data

became available.

The training process begins if there are at least two

user-defined categories with a sufficient amount of

training data. Through repeated experiments, we

determined that 100 images per class represent a

sufficient threshold for the training data. The process

also checks whether there are any ongoing CNN

training processes on the system. If training is already

in progress, it will not try to train a new model until the

ongoing process has ended. Next, if this is the first

finetuning attempt, it trains a new model by using the

pre-trained CNN named CaffeNet. We utilized CaffeNet

as a base model because it is a publicly available pre-

trained CNN that has a reasonable performance on

1,000 class object recognition task (ImageNet

challenge [5]). Otherwise, it trains a new model by

finetuning the pre-trained CNN on the previous

finetuning stage. When a single finetuning process has

finished, the previously trained CNN is replaced with

the newly trained CNN.

CLASSIFICATION

Classification is relatively simple. When a user chooses

the classification task, they take a picture of the object

by clicking the Google Glass touch pad. Similar to the

training task, DeepEye sends the image to the server,

but with a different message (_classify). Next, the

server uses the latest trained CNN to execute the Caffe

classification command on the image. If no error occurs,

the server sends the classification result (with

probability) back to DeepEye. If DeepEye receives the

result from the server, it displays them to the user

through Google Glass’s heads-up display (Figure 5).

Experiment: 10 Class Object Recognition

Overview

In this preliminary experiment, we aimed to evaluate

the prediction power of finetuned CNNs in a real world

scenario. To this end, we trained a CNN so that it can

recognize 10 different types of objects from images

Figure 5: DeepEye classification

taken by Google Glass. The ultimate aim of such a

system would be to help people with memory problems

to recognize their personal belongings.

Training and Validation Data

To begin with, we chose 10 personal objects (small toy,

badge, baseball cap, key, glass, pouch, food container,

lotion, watch, wallet) of a member of our research team,

and collected images using the proposed system

consisting of DeepEye and the server. We collected the

exact same amount of training data for each class,

namely 100 images. We also augmented training data

by creating additional image transformations using

ImageMagick’s convert tool. Specifically, we created

four variations of each original image that were rotated

by 90, 180, and 270 degrees, and were mirrored. We

included this step to alleviate potential overfitting

problems as much as possible by providing more

training data without extra labelling cost (data

augmentation [2, 5]).

We also collected 30 additional images for each class as

validation data. To differentiate these from original

training data, we deliberately changed the

photographing conditions such as lighting, angle and

background (see Figure 6, 7). Both training and

validation images were taken by a single participant in

a standard office setting. Even though Google Glass is

equipped with a 5MP camera capable of taking 2,560 by

1,888 resolution JPG images with a file size of about 2

megabytes, we collected reduced-size versions of the

images (1296 by 972 pixels) to avoid any network

delays between DeepEye and the server.

Finetuned Model
(# of classes)

Base Model
(# of classes)

Accuracy
(loss)

CNN (3) CaffeNet (1000) 0.99 (0.0212)

CNN (4) CNN (3) 0.99 (0.1819)

CNN (5) CNN (4) 0.99 (0.0555)

CNN (6) CNN (5) 0.99 (0.0462)

CNN (7) CNN (6) 0.99 (0.0454)

CNN (8) CNN (7) 0.96 (0.2696)

CNN (9) CNN (8) 0.94 (0.2319)

CNN (10) CNN (9) 0.97 (0.116)

Table 1: 10 class object classification – validation accuracy

Result

Table 1 summarizes the measured prediction power of

all finetuned CNNs on the validation data set. For up to

7 different objects, the trained CNNs showed a near

perfect performance in recognizing objects without any

serious overfitting concerns. However, the validation

accuracy was slightly diminished as the number of

object categories increases from 8 to 9. It may be

improved if we collect additional training images of the

corresponding objects, and train a new CNN at the next

finetuning stage. The final trained CNN’s validation

accuracy was 97% with a loss of 0.116, and took

approximately 7 minutes to train this model on our GPU

environment.

Discussion and Future Work

Google Glass

We showed the feasibility of the proposed object

recognition system via Google Glass. Yet, it still has

some issues that need to be overcome before practical

use. Google Glass emits a lot of heat when it

continuously utilizes the camera function. According to

[7], a single camera shot heats Google Glass 28°C

Figure 6: Sample training image

Figure 7: Sample validation

image

above the surrounding temperature. Because Google

Glass is in direct contact with the skin, the heated

surface may lead to discomfort and potentially even

health problems for users. Therefore, users may have

trouble collecting multiple images at once via Google

Glass. We expect Google to fix these issues in the next

generation of Google Glass.

Scalability and Applicability

At this moment, there exists no large-scale image

dataset collected from wearable computers such as

Google Glass. Therefore, we generated the custom

dataset using DeepEye in our experiment, and utilized

it for testing the proposed system. However, we will

need to evaluate it with larger image datasets.

Specifically, it is necessary to investigate whether the

proposed system also works well for more complex

image classification problems (e.g., 100 class object

recognition). Also we need to test the system on

different types of object recognition tasks, such as face

recognition for the abovementioned university professor,

to show its applicability in various situations.

All of these steps are important to verify that the

system could support users’ daily memory-related tasks.

Thus, we are considering distributing DeepEye to a

group of Google Glass users, and to collect more

diverse image data from their everyday lives. This will

let us conduct additional experiments to gauge the

scalability and applicability of the proposed system.

Effectiveness

We believe general users are unlikely to have difficulty

using the proposed system because they are only asked

to perform some simple operations via Google Glass

(e.g., image labelling through Google Voice Input).

However, we need to check the effectiveness of the

system with target users who have special needs. More

specifically, we need to quantitatively and qualitatively

assess the usability of the system for people with

memory disorders (e.g., mild cognitive impairment),

possibly including their caregivers. Their feedback may

allow us to improve our user interface. More

importantly, a longitudinal study needs to be conducted

to verify whether the proposed system can improve

their memory and cognitive abilities. To that end, we

might need to collaborate with medical professionals.

Conclusion

In this paper, we proposed and prototyped a novel

wearable system DeepEye that is aimed at augmenting

human memory. To that end, the system builds

personalized deep learning models for recognizing

objects of interest to a user. To the best of our

knowledge, this is the first attempt to train machine

(deep) learning models for personalized object

recognition, via camera-equipped wearable computers

like Google Glass. The proposed system works as a

client-server model: the Google Glass client collects

images from a user’s everyday life and sends them to a

GPU-equipped Linux server. The server then trains a

deep convolutional neural network (CNN) on the user-

specific image data. We utilized finetuning to efficiently

update the pre-trained network on newly-added image

data. In the custom 10 class object recognition task,

DeepEye trained a personalized CNN within 7 minutes

on our GPU and showed a 97% classification accuracy.

We plan to test the system with more complex object

recognition tasks and to verify its effectiveness in

augmenting human memory and perception.

Acknowledgements

Part of this work was done while Hosub Lee was a

summer intern at Samsung Research America,

Mountain View, CA.

References
1. Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber.

2012. Multi-column deep neural networks for image
classification. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 3642–3649.

2. Andrew G Howard. 2013. Some improvements on
deep convolutional neural network based image
classification. arXiv preprint arXiv:1312.5402
(2013).

3. Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the ACM
International Conference on Multimedia. ACM, 675–
678.

4. Sergey Karayev, Matthew Trentacoste, Helen Han,
Aseem Agarwala, Trevor Darrell, Aaron Hertzmann,
and Holger Winnemoeller. 2014. Recognizing image
style. In Proceedings of the British Machine Vision

Conference (BMVC). BMVA Press.

5. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. 2012. Imagenet classification with deep
convolutional neural networks. In Advances in
neural information processing systems. 1097–1105.

6. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature 521, 7553 (2015),
436–444.

7. Robert LiKamWa, Zhen Wang, Aaron Carroll, Felix
Xiaozhu Lin, and Lin Zhong. 2014. Draining our
glass: An energy and heat characterization of
google glass. In Proceedings of 5th Asia-Pacific

Workshop on Systems. ACM, 10.

8. Steve Mann. 1997. Wearable computing: A first
step toward personal imaging. Computer 30, 2
(1997), 25–32.

9. Sinno Jialin Pan and Qiang Yang. 2010. A survey on

transfer learning. Knowledge and Data Engineering,
IEEE Transactions on 22, 10 (2010), 1345–1359.

10. Jürgen Schmidhuber. 2015. Deep learning in neural
networks: An overview. Neural Networks 61 (2015),
85–117.

11. Pierre Sermanet, David Eigen, Xiang Zhang,
Michaël Mathieu, Rob Fergus, and Yann LeCun.
2014. Overfeat: Integrated recognition, localization
and detection using convolutional networks. In
Proceedings of the International Conference on
Learning Representations (ICLR). CBLS.

12. Karen Simonyan and Andrew Zisserman. 2015.

Very deep convolutional networks for large-scale
image recognition. In Proceedings of the
International Conference on Learning
Representations (ICLR). CBLS.

13. Thomas Way, Adam Bemiller, Raghavender Mysari,
and Corinne Reimers. 2015. Using Google Glass
and Machine Learning to Assist People with Memory
Deficiencies. In Proceedings on the International

Conference on Artificial Intelligence (ICAI). The
Steering Committee of The World Congress in
Computer Science, Computer Engineering and
Applied Computing (WorldComp), 571.

14. Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In
Computer vision–ECCV 2014. Springer, 818–833.

