
  

Amplifying Human Cognition: Bridging 
the Cognitive Gap between Human and 
Machine 

 

Abstract 
Evolution has always been the main driving force of 
change for both the human body and brain. Presently, 
in the Information era, our cognitive capacities cannot 
simply rely on natural evolution to keep up with the 
immense advancements in the field of Ubiquitous tech-
nologies, which remain largely uninformed about our 
cognitive states. As a result, a so-called “cognitive gap” 
is forming between the human (users) and the machine 
(systems) preventing us from fully harnessing the ben-
efits of modern technologies. We argue that a “cogni-
tive information layer”, placed in-between human and 
machine, could bridge that gap, informing the machine 
side about aspects of our cognition in real time (e.g., 
attention levels). In this position paper, we present our 
vision for such a software architecture, we describe 
how it could serve as a framework for designing and 
developing cognition-aware applications, and we show-
case some application scenarios as a roadmap towards 
human-machine convergence and symbiosis.  
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Introduction 
Over the millennia, the human brain has evolved to 
excel in collecting (perception) and processing infor-
mation (cognition) in an incredibly efficient manner. 
Essentially, the way our brain has evolved and struc-
tured is what makes us so different from all other ani-
mal species, many of which have significantly larger 
brains with even higher number of synapses [14]. For 
the human brain to continue evolving, certain organs 
may have to become bigger including the human brain 
per se. For example, for processing more information, 
wider synapses are needed, resulting in a demand for 
greater in-brain blood flow and in turn a larger heart. 
However, even if the human brain and its supporting 
organs and networks will eventually grow in size, fur-
ther evolution will certainly face limits imposed by laws 
of Physics, as well as diminishing efficiency after a cer-
tain brain size increase threshold [8]. Nevertheless, 
these changes cannot occur naturally and in a timely 
manner for satisfying the frenetically increasing de-
mands in information processing of the today’s era.  

Evidently, the way people collect and process infor-
mation has always been influenced by technology. For 
example, the introduction of stone-headed javelins dur-
ing hunting would have greatly altered decision making 
and strategic thinking of prehistoric humans. Similarly, 
the introduction of smartphones has greatly influenced 
the way we seek and consume information, highly dis-
rupting the entire spectrum of our cognitive processes 
(attention, memory, learning, decision making, problem 
solving etc.). Albeit technology so far had a beneficial 
role on how we perceive and process the world around 
us, in recent years it has undertaken a rather disruptive 
and double-edged role. The era of ubiquitous technolo-
gies and the Internet of Things (IoT) finds our brains 

unprepared for handling the sheer volume of infor-
mation produced daily by a multitude of sources. Atten-
tion deficit disorders, the multi-tasking illusion, learning 
difficulties, sleep deprivation, weak memory, chronic 
stress, etc., are just a few examples of the negative 
side effects that modern technologies impose on every-
day life. As modern technologies become increasingly 
pervasive and even addictive [11], while blurring the 
limits of personal and professional life, such negative 
side effects are expected to further exasperate. Some 
companies limit access to technology after a certain 
hour (e.g., the “right to disconnect”), while individuals 
decide to abstain from using smart devices or social 
media for a period of time or even completely. But why 
should one have to resort to such practices after all? Is 
technology per se not meant to help us improve our 
quality of life, and eventually realize our full potential 
as human beings? 

We believe that modern technologies hold the potential 
to greatly amplify human cognition in the entirety of its 
spectrum, seizing in a way the role of natural evolution 
[13]. In this position paper, we argue that the negative 
effects observed by increased technological use are 
simply side effects of our inability to keep up with the 
pace that technology advances. We attribute this phe-
nomenon to the fact that despite the overall technologi-
cal proliferation, the devices and systems (i.e., machine 
side) we use daily, still remain oblivious of our cognitive 
and affective states, assuming always the maximum of 
our cognitive capacities. We name this discrepancy 
“cognitive gap” and we propose a software architecture, 
we call the “Cognitive Information Layer” (CIL), for 
bridging this gap, essentially paving the way towards 
human-machine convergence. 



 

Background 
Already by 1965 (the year of the first space-walk), 
people envisioned a future where humans are linked to 
computers in a symbiotic manner for enhanced cogni-
tion. The 1965 Sunday comic strip “Our New Age” stat-
ed: “By 2016, man’s intelligence and intellect will be 
able to be increased by drugs and by linking human 
brains directly to computers!”1. Underexplored, equally 
like outer-space, the study of the human brain gave 
slowly birth to neurotechnology - in the early 1970s -, 
proposing the use of electroencephalography (EEG) as 
a new way for directly linking brain activity with com-
puters [16].  

Interestingly, to date, computer systems and the hu-
man brain have already formed a basic -unidirectional- 
communication channel through Brain-Computer Inter-
faces (BCIs). Disabled people can now learn to control 
robotic limbs by the sheer power of their mind [19], 
stroke survivors can manipulate virtual limbs in virtual-
reality [18] up to brain-controlled computer games de-
signed for entertainment [12]. Undoubtedly, BCIs have 
driven a revolution in the areas of assistive and rehabil-
itative technologies, increasing people’s quality of life. 

Despite this technological advancement, however, the 
transition from using BCI technology in research labs to 
everyday life is still slow and far from the 1960s vision. 
The idea of closing the “cognitive gap” between Human 
and Machine has for long been discussed in the circles 
of academics, futurists, practitioners and science (fic-
tion) enthusiasts. So far, certain approaches have fo-
cused on augmenting particular aspects of cognition, 

                                                   
1 http://www.smithsonianmag.com/history/sunday-funnies-

blast-off-into-the-space-age-81559551/ 

such as memory [4,5,10], attention [6,15] and learning 
[9].  

Several endeavors promise to bring closer together the 
human mind with technology, in what has been named 
“Human Machine Confluence”, essential the vision in 
which the human brain converges with the machine 
[7]. An EU project under this title has attempted to 
showcase that the concept may be viable in the future, 
identifying a set of research challenges 10 years ago in 
which very few advancements have happened since 
then. In the US, the BRAIN initiative2 received initial 
funding of approximately $110 million from the Defense 
Advanced Research Projects Agency (DARPA), the Na-
tional Institutes of Health (NIH), and the National Sci-
ence Foundation (NSF). The EU Human Brain project3, 
involving researchers from over 100 institutions, re-
ceived funding over one billion Euros, together with 
criticism from Europe’s leading neuroscientists. More 
recently, SpaceX and Tesla CEO Elon Musk has joined 
the BCI venture with a newly founded company called 
Neuralink4. This company is centered on creating im-
plantable interfaces in the human brain, with the even-
tual purpose of helping human beings merge with soft-
ware for a true human-machine symbiosis. Facebook 
unveiled a project on a BCI that could also be used by 
patients with severe paralysis. This will be a system 
that allows one to type even faster than one’s physical 
hands, at upwards of 100 words per minute. The focal 
point of the debate is primarily the level of invasiveness 
of the employed cognitive intervention, with some ar-
guing for brain implants, while others prefer non-
invasive methods such as electrodes or information 
                                                   
2 https://www.braininitiative.nih.gov  
3 https://www.humanbrainproject.eu  
4 https://neuralink.com 



 

from multiple sources. Current technology fails to pro-
vide reliable brain-to-computer interaction. Many brain 
processes are still unknown even to modern neurosci-
ence. Thus, to fully understand how to decode brain 
information, as captured by current technology, and 
infer the user’s cognitive state in a less invasive man-
ner, an intermediate layer is necessary for not only 
connecting human and machine, but doing so in a sym-
biotic manner, synergistically rather antagonistically. 

Cognitive Information Layer 
The main component of the envisioned architecture is 
an intermediate layer between the human and the ma-
chine, responsible for continuously monitoring the us-
er’s cognitive and affective states and informing the 
machine side for performing adequate interaction inter-
ventions. As “machine”, we consider systems with 
which we interact frequently and increasingly depend 
on, such as personal computers, smartphones, smart-

 

Figure 1: The Cognitive Index Layer (CIL) receives inputs of multimodal data streams to a stream aggregator component re-
sponsible for the data synchronization. The feature selector extracts meaningful features from the amassed multimodal data and 
delivers them as inputs to the neural network model that has been initially trained on a set of interaction rules. The cognitive 
index then outputs the adequate interaction criteria for adjusting user presentation to user’s current cognitive state and the 
feedback loop closes with behavioral measures (e.g., task completion times etc.). (icons: thenounproject) 



 

watches, public/personal displays and soon any IoT 
device. Interaction interventions regulate the infor-
mation flow between human and machine to match the 
current cognitive and affective state of the user, user 
context and task at hand. An overview of the proposed 
cognitive information layer is shown in Figure 1. In 
short, the envisioned architecture is based on real time 
multimodal data stream inputs that reveal both current 
cognitive and affective states, task at hand and user 
context. Next, features are extracted and classification 
takes place for selecting the adequate interaction crite-
ria based on a constantly updated “cognitive index”. 
Finally, the user presentation is adapted on the fly ac-
cording to the cognition-aware interaction criteria out-
putted. Below, we describe in more detail the primary 
stages and components of the envisioned architecture. 

Multimodal Data Streams 
We are currently experiencing an upheaval of data that 
characterize one’s physiological states, mainly due to 
the miniaturization and reducing cost of sophisticated 
wearable physiological hardware [17]. Mobile eye-
trackers (e.g., Tobii), affordable portable neural inter-
faces (e.g., OpenBCI) and biophysical monitoring wrist-
bands (e.g., Empatica E4), produce a sheer volume of 
physiological data. Gaze behavior, Electroencephalog-
raphy (EEG), Heart Rate Variability (HRV), and Electro-
dermal Activity (EDA) are just a few examples of physi-
ological data that can reveal one’s cognitive or affective 
states, stress levels and other intrinsic information [2]. 
This plethora of cognitive descriptive information can be 
utilized in conjunction with user context, task at hand 
and preferences to greatly increase the accuracy at 
which user cognitive and affective capacities can be 
estimated [1]. As shown in Figure 1, all multimodal 
data streams are aggregated continuously and then 

pushed into the feature selection stage, where data is 
filtered and useful features are extracted. Feature ex-
traction aims at describing the acquired data streams 
with as few relevant values as possible. Such features 
should capture the information embedded in those data 
streams that is relevant to describe the mental states, 
while rejecting the noise and other non-relevant infor-
mation. The next step, denoted as “classification” as-
signs a class to a set of features extracted from the 
data streams. This class corresponds to the kind of 
mental state identified. Classification algorithms are 
known as “classifiers”. Typically, for learning which kind 
of feature vector corresponds to which class (or mental 
state), classifiers try either to model which area of the 
feature space is covered by the training feature vectors 
from each class or they try to model the boundary be-
tween the areas covered by the training feature vectors 
of each class mostly used in BCIs.  

The Cognitive Index 
When first installed, the Cognitive Index (CI) is simply 
a catalog of appropriate interaction rules for efficient 
management of one’s cognitive resources, extracted 
from guidelines and best practices available in litera-
ture. However, the CI is constantly updated to match 
the cognitive capacities, preferences, task at hand and 
context of each individual user. Next, the CI is respon-
sible for selecting the appropriate interaction criteria in 
terms of information prioritization (e.g., e-mails over 
social media notifications when at work), adequate 
channel (i.e., mobile vs. stationary), modality (i.e., vis-
ual, audible or tactile) and certain interface parameters 
(e.g., font size), as shown in Figure 1. Ultimately, the 
CI will be enriched by interconnecting the CIs of differ-
ent users for creating a universal pool of cognitive in-
teraction mapping. 



 

The Feedback Loop 
Finally, the outputted interaction criteria have resulted 
in tangible interaction interventions that are delivered 
in real time to the user, by appropriately altering user 
presentation to better match current cognitive capaci-
ties and needs. At this point, a closed feedback loop 
informs in situ the cognitive information layer about the 
effect that the modified user presentation has on user’s 
cognitive state via behavioral measures (e.g., task 
completion times, motion patterns etc.). This serves as 
a real-time assessment mechanism for evaluating the 
effect of the selected interaction intervention, and 
adapting the interaction criteria accordingly.  

Cognitive Application Framework 
Knowledge obtained from the deployment of the CIL 
will be the basis for eliciting requirements and guide-
lines for informing the design and development of cog-
nition-aware applications. “Cognitive applications” will 
consider user cognitive states for adapting information 
flow, interaction techniques and interface parameters. 
Design guidelines, requirements and best practices will 
be incorporated into a cognitive application framework 
along with a dedicated cognitive Application Program-
ming Interface (API). The cognitive API will connect 
cognition-aware applications with the CIL for providing 
interaction criteria that facilitate communication be-
tween human and machine. For instance, the cognitive 
API will inform cognition-aware applications such as a 
text editor, an (mobile) e-mail client and a music play-
er, that user’s attention levels are currently scarce. In 
turn, the cognition-aware text editor will increase win-
dow and font size, and contrast, for keeping user fo-
cused to a text typing task. Simultaneously, the cogni-
tion-aware e-mail app will suppress incoming e-mail 
notifications for avoiding disrupting user’s attention, 

and the cognition-aware music player app will opt in for 
music that helps one focus. This application scenario 
showcases that the CIL, via a dedicated cognitive API, 
could synergistically amplify human cognition by in-
forming and adapting information flow and interaction 
across multiple applications and channels (mo-
bile/stationary) simultaneously and surreptitiously. This 
CIL characteristic may be vital for our cognition, rectify-
ing and regulating the fierce competition of modern 
applications over our limited cognitive capacities. 

Challenges  
Clearly, the proposed approach is difficult to realize. 
From a software architecture perspective, challenges lie 
throughout the entire stack of the cognitive information 
layer. First, multimodal data streams can be largely 
heterogeneous with wildly varying sampling rates and 
fundamentally divergent acquisition logic. For example, 
an EEG signal is continuously obtained from 250 - 500 
Hz, whereas a location transition can be sampled asyn-
chronously, yet both data types need to be synchro-
nized and processed together. Even so, accurately in-
ferring user’s actual cognitive state (e.g., for ground 
truth acquisition) remains a conundrum. Selecting the 
right classifier for features derived from a plethora of 
multimodal data streams, could be a solution but also a 
considerable challenge. In Figure 1, we assume a neu-
ral network (NN) as the most adequate classifier candi-
date due to the NN’s ability to deal with highly hetero-
geneous input. Finally, the outputted interaction criteria 
should be implemented within the cognitive application 
per se. This means that (mobile) applications that one 
uses daily (e.g., an Internet browser) will need to be 
re-programmed to accommodate for changes that the 
outputted interaction criteria recommend. However, we 
believe that the biggest challenge is a shift in how de-



 

signers and developers create software for everyday 
use. Cognition-aware software will have to consider the 
user’s cognitive states and adapt its functionalities and 
presentation accordingly. 

From a sociotechnical perspective, challenges lie pri-
marily in user adoption. Physiological sensing hardware 
(e.g., an EEG system) is still expensive, cumbersome to 
use, tiresome to wear for extended periods of time, and 
socially unacceptable. Furthermore, current hardware 
solutions are prone to noise generated from movement 
or muscle activity, heavily degrading the quality of the 
acquired signal. However, as hardware miniaturization 
progresses, with wearables and IoT becoming more 
prevalent, we expect that physiological sensing will be-
come gradually mainstream, perhaps even in an im-
plant level (e.g., Neuralink).  

From a user privacy perspective, the streams of data 
supplied to the CIL are highly sensitive, able to reveal 
apart from user’s cognitive state, also health and affec-
tive states, and thus data protection measures and pol-
icies will be of paramount importance. Also, the diffu-
sion of knowledge about our cognitive states to a net-
work of interconnected objects (IoT) may also raise 
unexpected ethical and security concerns [3]. 

Despite the considerable challenges, we believe that 
the proposed architecture, or a similar one, will be im-
plemented and seamlessly integrated in an operating 
system level in the mid-term future. This integration 
will form and enforce design and development policies 
for creating cognition-aware applications. 

Summary 
Human brain evolution is thought to have already 
reached its apex together with our cognitive capacities. 
Some argue that one way forward is through achieving 
human-machine symbiosis, the notion of human con-
verging with the machine. While sounding like a Sci-Fi 
scenario, we argue that not only could it soon be a re-
ality, but also a necessity. In this position paper, we 
introduced the cognitive information layer as an inset 
between human and machine, for informing the ma-
chine side about current user’s cognitive state and facil-
itating human-machine interaction. Thus, we define 
human cognition amplification as the optimization of 
existing cognitive resources, rather than extending hu-
man abilities beyond the humanly possible. We illus-
trated how by supplying a set of multimodal data 
streams to the proposed layer, it can output a set of 
interaction criteria as a pivot for manipulating user 
presentation with cognition-aware applications. We 
identified a range of challenges, including the need to 
reform traditional software (and not only) design think-
ing so to create software that respects our cognitive 
capacities. We believe that the human brain and tech-
nology can and should be able to work more closely in 
tandem for amplifying our cognitive capacities in the 
era of distractions and information overload.  
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